Available online at <u>www.ijpab.com</u>

DOI: http://dx.doi.org/10.18782/2582-2845.7768

ISSN: 2582 – 2845 *Ind. J. Pure App. Biosci.* (2019) 7(6), 386-401

Research Article

Isolation and Identification of Arbuscular Mycorrhizal (AM) Fungi from The Root Zone Soils of 11 Different Fruit Crops Grown in the Central Campus, MPKV, Rahuri

Someshwar Raut^{1*}, Chintamani Deokar¹, Annasaheb Navale² and Jayshri Dahatonde³ ¹Ph.D scholar, ²Associate Professor

^{1,2}Department of Plant Pathology and Agril. Microbilogy, Post Graduate Institute, MPKV, Rahuri
¹Professor of Plant Pathology, Plant Pathology and Agril. Microbiology Section, College of Agriculture, Dhule
³Assistant Professor, Department of Agril. Entomology, DVVPF's College of Agriculture, Ahmednagar
*Corresponding Author E-mail: someshwar844@gmail.com

Received: 23.09.2019 | Revised: 29.10.2019 | Accepted: 7.11.2019

ABSTRACT

The aim of the present study was to isolate AM fungi from the root zone soils of 11 different fruit crops grown in the central campus, MPKV, Rahuri.

The chemical properties of the root zone soils of the collected sites which included, soil pH, organic carbon, available nitrogen, available phosphorus and micro-nutrients (Fe, Mn, Zn and Cu). As the soil pH is concerned, majority of soils are slightly alkaline (7.1-8.0). Strongly alkaline soil pH (8.58) was recorded in (Block- E, Survey no. 84) and neutral soil pH (7.40) in (Block- E, Survey No. 92).

Soil analysis for organic carbon content showed low to moderate status. The highest organic carbon status was recorded in Block: HF Survey no. 57 (0.66 %) and lowest in Block: E Survey no.78 and survey no. 94 and Block : B Survey no.24 (0.20 %).

The available nitrogen content in the present study ranged from 110 and 225 kg ha⁻¹ i.e. very low to low nitrogen content as per six tier rating. The least and highest values of available phosphorus ranged between 10 and 28 kg ha⁻¹. Soil samples showed low to moderate ratings as per six tier rating.

In the present study, micronutrients viz. Fe, Mn, Zn and Cu were determined from 77 root zone soil samples collected. 83.12 per cent of soil samples showed deficit in Fe content, 100 per cent soil samples were deficit in Mn content, 81.82 per cent of soil samples showed deficit in Zn content, where as 3.99 per cent of soil samples showed deficit in Cu content.

A total of 11 AM fungal species were isolated from 77 different root zone soil samples belonging to five different genera viz., Glomus, Aculospora, Gigaspora, Sceutellospora and Rhizophagus. Glomus was the dominant genus followed by Aculospora, Sceutellospora, Rhizophagus and Gigaspora. Glomus mosseae was the most dominant species was recorded. A number of spore morphotypes were detected at each site, according to shape, colour and size. All the spores belonged to Glomerales and Diversisporales orders of AM fungi. A total of 4,243 spores of AMF were wet sieved from the soil samples collected.

Keywords: AM fungi, Chemical properties, Micronutrients and Root zone soil.

Cite this article: Raut, S., Deokar, C., Navale, A., & Dahatonde, J. (2019). Isolation and Identification of Arbuscular Mycorrhizal (AM) Fungi from the Root Zone Soils of 11 Different Fruit Crops Grown in the Central Campus, MPKV, Rahuri, *Ind. J. Pure App. Biosci.* 7(6), 386-401. doi: http://dx.doi.org/10.18782/2582-2845.7768

INTRODUCTION

The microbial communities have become an integral part of the biosphere. They play a key role in maintaining the biological equilibrium in biosphere. The living components developed certain relationships such as symbiotic, mutualistic and antagonistic. These relationships helped to maintain biological equilibrium of nature. The word Mycorrhiza (Greek: mykes = mushroom; rhiza = root) was coined by Albert Bernard Frank in 1885. The German Forest Plant Pathologist, to describe the mutual association of two different organisms, plant and fungus, which benefit from each other in a mutualistic symbiosis under ideal conditions, i.e. the plant provides carbohydrates for the fungus, which in turn makes nutrients available for the plant (Harley, 1959).

AM fungi are strictly obligate biotrophs feeding on the products of photosynthesis of their host. As AM fungi are cosmopolitan in distribution, not only bound to particular group of plants but can be found extensively associated with Pteridophytes, Gymnosperms and Angiosperms. They occur in all types of habitats including even sand dunes (Sarmah et al., 2001).

The AM fungi act as biofertilizers, bioregulators and bio protectors (Mulongoy et al., 1992).Various factors like change in pH, temperature, soil moisture content and soil depth etc., influence the distribution of AM fungi.

Facilitated nutrient uptake, particularly with respect to immobile nutrients, such as phosphorus, is believed to be the main benefit of the mycorrhizal symbiosis for plants (Miller & Jastrow, 1990). AMF hyphae produce a cell surface glycoprotein called glomalin, which improves soil aggregation and build up a macro porous structure of soil that allows penetration of water and air, and prevents erosion (Wright & Upadhyaya, 1998). The fungi also help in the uptake of micronutrients like Zn and Cu (Li et al., 1991). Further, the association also provides extraordinary support to the plants during unfavorable environmental stress like drought, increased level of salt, heavy metal toxicity and also during pathogen's attack (Harley & Smith, 1983; Kothari et al., 1991).

AM fungi enable the host plant to access nitrogen in an organic form that would be unavailable (Mukopadhyay & Maiti, 2009). The hyphae of AM fungi have capacity to extract nitrogen and transport it from the soil to the plant. AM fungi improves growth, nodulation and nitrogen fixation in legume-Rhizobium symbiosis. AMF association has tendency to supply more than 50 per cent of nitrogen required by plant (McFarland et al., 2010).

MATERIALS AND METHODS

Materials:-

Laboratory instruments

Different laboratory instruments used during the course of investigation were pH meter, electronic weighing balance, water bath, sieves $(500 \ \mu\text{m} - 250 \ \mu\text{m} - 125 \ \mu\text{m} - 105 \ \mu\text{m} - 75 \ \mu\text{m}$ - 45 \ \mu\mathcal{m}) spectrophotometer, stereoscopic zooming microscope, compound microscope, microscope attached with digital camera, etc.

Glassware

Different types of Borosil make glassware, *viz.*, petri dishes, glass slides, cover slips, pipettes, conical flasks and beakers of various capacities, glass rods, volumetric flasks, funnels, measuring cylinders of different capacities *etc.* were used.

Chemicals

The laboratory grade standard and pure chemicals used for study were $HgCl_2$, KOH, potassium dichromate, concentrated hydrochloric acid (HCL), phosphoric acid (H₃PO₄), sodium fluoride (NaF), ferrous sulphate, boric acid, potassium permanganate, sodium hydroxide, sulphuric acid (H₂SO₄), Darco-G 60, sodium bicarbonate, ammonium molybdate, stannous chloride solution *etc*.

MATERIALS AND METHODS

Isolation and identification of AM fungi Study area: Central Farm Mahatma Phule Krishi Vidyapeeth, Rahuri

Mahatma Phule Krishi Vidyapeeth, Rahuri is the premier Agricultural University established

Ind. J. Pure App. Biosci. (2019) 7(6), 386-401

ISSN: 2582 - 2845

on March 29, 1968. Location of the campus is between 19° 47' N to 19° 57' N latitude and between 74° 19' N longitude (Plate 1).

The annual maximum and minimum temperature ranges between 30 and 40°c and 10 to 20°c during summer and winter respectively. It is about 525 M above MSL with average rainfall of 460 mm. The main horticultural fruit crops cultivated are mango, guava, grapes and pomegranate .The Jurisdiction of MPKV, Rahuri extends over Western Maharashtra consisting of 10 districts *viz.*,Jalgaon, Dhule, Nandurbar, Nashik, Ahmednagar, Pune, Solapur, Satara, Sangali and Kolhapur. The total Area of central campus at Rahuri is 3548.30 ha which includes six blocks *viz.*, A, B, C, D, E, F and Horticulture farm (Plate 2).

Selected fruit crops for sampling

Sr.	Fruit Crop	Botanical Name	Number of orchards
No.			
1	Mango	Mangifera indica	31
2	Lemon	Citrus limon	04
3	Sweet orange	Citrus sinensis	04
4	Grapes	Vitis vinefera	11
5	Pomogranate	Punica granatum	05
6	Sapota	Manilkara achrus	12
7.	Guava	Psidium guajava	05
8.	Onla	Embilica officinalis	02
9.	Ber	Zizipus maurantiana	01
10.	Fig	Ficus carica	01
11.	Custard Apple	Annona reticulata	01
		Total no. of orchards :	77

Table 1: List of fruit cr	ops for sampling fro	m orchards at central	campus, MPKV	, Rahuri
---------------------------	----------------------	-----------------------	--------------	----------

Collection of samples (soil and root)

The soil samples for the present investigation were collected from root zone soil along with root system intact by digging the root zone area of eleven fruit crops from horticulture farm and Chief Scientist (seeds) Farm at central campus, MPKV, Rahuri. Random sampling method was employed. The soil and root samples were collected at a depth of 10-15 cm deep after scrapping away the top litter layer. The individual sample of each crop plant was collected. Representative soil samples were collected in sterilized polythene bags, labeled and stored at 20[°] C in the Department laboratory. The soil samples were air dried in shade and kept in polythene bags for further use. The roots were preserved and later on stained for determination of per cent mycorrhizal colonization.

Chemical properties and available nutrient status of soils collected from root zone of selected fruit crops from central campus MPKV, Rahuri

Estimation of soil pH

Soil pH (1:2.5) was estimated by potentiometry method (Jackson, 1973)

- 1. Weighted 20g air-dry soil into beaker and add 50 mL distilled water. Stirred at regular intervals for one hour.
- The pH meter was calibrated using pH
 5 buffer solution. Then the pH meter was standarized with known pH of buffer solutions 4.0 and 9.2.
- 3. Measured the pH of the sample suspension, stirring the suspension well just before introducing the electrodes. pH value determined from the automatic display of the pH meter.
- 4. Rinsed the electrodes after each determination with water carefully but do not blot them dry with filter paper before the next determination. Standardize the glass electrode after every ten determinations.

Estimation of organic carbon Organic carbon of soil was estimated by Wet oxidation method (Nelson & Sommers, 1982)

One gram of soil sample was finely ground and passed through 0.5 mm sieve and placed into 500 mL conical flask. 10 mL of 1 N potassium dichromate solution was pipetted using 10 mL pipette and the flask was swirlled gently. 20 mL of concentrated hydrochloric acid was added by measuring cylinder. The flask was swirlled by hand for a minute and set aside on asbestos pad for exactly half an hour. At the end of half an hour, 200 mL of distilled water was added; add 10 mL of H_3PO_4 and 0.2 g of NaF and 3-4 drops of ferroin indicator. Titrate the contents of the flask against 0.5 N ferrous sulphate solution till the colour changes from brown-green- blue to finally red. Run the blank determination in the same manner.

Estimation of available nitrogen content

Available nitrogen content in the soil was estimated by alkaline permanganate method (Subbiah & Asija, 1956)

20 g of sieved soil (2 mm) was transferred, into one-liter round bottom flask. Little distilled water added with the help of jet in such a way that the particles of soil do not remain stuck to the sides of the flask. 2 to 3 glass beads were added to prevent bumping and 1 mL of liquid paraffin to prevent frothing. 100 mL of potassium permanganate and 100 mL of sodium hydroxide solution were added to the flask. Both the solutions were prepared fresh. Distillate was collected in a beaker containing 20 mL of boric acid working solution. Approximately 150 mL of distillate was collected. The distillate was titrated with standard 0.02 N H₂SO₄ till the colour changed from green to red and the burette reading was recorded. Blank was carried out without soil.

Estimation of available phosphorus

Determination of available phosphorus from soil was done by Olsen P method (Watanable & Olsen 1965)

Weighted 5 g of sieved soil (2mm), into a 250 mL conical flask. A pinch of phosphorus free

Darco-G 60 and 50 mL of 0.5 N sodium bi carbonate solution (soil:solution-1:10) was added. Shaked the contents for 30 minutes. The contents were filtered using Whatman No.42 filter paper. 5 mL of the filtrate was pipetted into 25 mL volumetric flask and added 5 mL of ammonium molybdate solution. Mixed well until the evolution of CO₂ ceases. 10 mL of distilled water was added about washing the neck of the flask to remove the adhering molybdate. 1 mL of working stannous chloride solution was added and maked the volume to the mark with distilled water. The blank was runned with similar determination and colour intensity was measured at 882 nm on spectrophotometer.

Estimation of micronutrients

Available micronutrients (Fe, Mn, Zn& Cu)from soil were estimated by DTPAextractant (Atomic Absorptionspectrophotometer) (Lindsay & Norvell1978)

The content of soil were estimated by using Atomic absorption spectrophotometer with appropriate hallow cathode lamps (Lindsay & Norwvell, 1978).

20 g sieved (2 mm) air-dried soil was weighted in 150 mL conical flask. Extracting solution (DTPA) in proportion of 1:2 (soil: DTPA extracting solution) was added and shaked the sample for 2 hours on a horizontal shaker. Suspension was then filtered by gravity through Whatman no. 42 filter paper. The digested material was directly fed to Atomic absorption spectrophotometer (AAS) with appropriate hallow cathode lamps (Fe, Mn, Zn & Cu) with suitable dilutions and concentration of these elements was recorded in ppm by referring standard curve.

Isolation of AM fungi

The extraction of AM fungal spores and sporocarps from root zone soil was done by wet sieving and decanting method (Gerdemann & Nicloson, 1963). The procedure is as follows,

1. A quantity of hundred (100) grams of root zone soil was suspended in 1000ml of tap water. The mixture was stirred for 10-15 seconds. Heavier coarse particles were allowed to settle in water for 1-2 minutes.

 The supernant was decanted through sieves stacked in descending order of mesh size (500µm-250 µm -125 µm -105 µm -75 µm - 45µm).

The above steps were repeated twice to ensure that the majority of spores were extracted from the sampled rhizosphere soil.

- 1. The contents left on each sieve were backwashed by water to remove turbidity of spores.
- 2. The residue (soil particles and spores) from each sieve was collected separately in beakers.
- 3. The residue was filtered through Whatman No.1 filter paper.
- 4. The filter paper was placed on petri dish and care was taken to see that it remained moist.
- 5. The contents of the Whatman No.1 filter paper were examined for spores and sporocarps under stereomicroscope.

3 Identification of AM fungi

The isolated AMF spores and sporocarps were picked up using a dissecting needle under a dissecting microscope and mounted in polyvinyl alcohol-lactoglycerol (PVLG) with Meltzer's reagent on a glass slide for identification. Taxonomic identification of spores was done upto species level based on size, colour, spore wall ornamentation, presence or absence of flexible inner walls and shape and size of subtending hypha of the spores.

Taxonomic identification of spores was carried out by matching the descriptions provided by The International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi (INVAM) (http://www.invam.caf.wvu.edu). The identification was done according to their spore morphology and wall characteristics. The photographs of AMF spores were taken with the help of Olympus imaging corp., digital camera model no. E-330 attached with Olympus CX31 microscope.

RESULT AND DISCUSSION Isolation and identification of Arbuscular Mycorrhizal (AM) fungi.

Isolation

Collection of samples (soil and roots)

The soil samples for the present investigation were collected from root zone soil along with the root system intact by digging the rhizosphere area of eleven fruit crops from Horticulture Farm and Chief Scientist (seeds) Farm at the central campus, MPKV, Rahuri. Random sampling method was employed. The soil samples were collected from a depth of 10-15 cm deep after scrapping away the top litter layer. The individual sample of each crop plant was collected. Representative soil samples were collected in the sterilized polythene bags, labeled and stored at 20° C in the Departmental laboratory. The soil samples were air dried in shade and kept again in polythene bags for further use. The roots were preserved and later on stained for of determination percent mycorrhizal colonization. Similar root and soil samples collection was carried carried out by Gashua (2015) and Sunita (2017).

Soil parameters

The collected soil samples from 77 orchards were analyzed for soil pH, organic carbon, available nitrogen, available phosphorus and micro-nutrients (Fe, Mn, Zn and Cu).

The data on chemical properties of the root zone soil samples of different fruit crops collected from 77 different places is presented in Table 2 and 3. The physicochemical properties of the rhizosphere soil of the collected sites included the soil pH, organic carbon, available nitrogen, available phosphorus (Table 2) and micro-nutrients (Fe, Mn, Zn and Cu) (Table 3). The soil provides the physical support needed for the anchorage of the root system of plant and also serves as the reservoir of air, water and nutrients which are essential for plant growth.

The effect of diverse edaphic factors was observed on the occurrence and distribution of AM fungal species through these studies. AM fungal species were found to be distributed well over different soil

samples. However, their population varied significantly. In the present study, it was observed that 100 % of the sites accounted for the presence of AM fungi.

Effect of soil properties on the distribution of AM fungi:

The chemical characteristics of soil samples from all the 77 study sites are presented in Tables 4.1. It is seen that majority of the soils are slightly alkaline (7.1-8.0). Higher (strongly alkaline) soil pH (8.58) was recorded in mango fruit crop (Block- E, Survey no. 84) and low value (neutral) of soil pH (7.40) in mango fruit crop (Block- E, Survey No. 92). All the root samples collected from 77 locations were found to be infected with AM fungi irrespective of soil pH.

4.1.1.2.2 Organic carbon

Soil analysis for organic carbon (%) shows low to moderate organic carbon content. The highest organic carbon was recorded in grape fruit crop (Block: HF Survey no. 57) i.e., 0.66 per cent and lowest in mango fruit crop (Block: E Survey no.78 and survey no. 94) and guava fruit crop (Block: B Survey no.24) *i.e.*, 0.20 per cent, respectively. Majority of the soil samples showed low to moderate range of organic carbon (%).

4.1.1.2.3 Available Nitrogen

The soil analysis showed that very low status of available nitrogen content in soil was seen from mango fruit crop (Block: A, Survey no.137, Block: E, Survey no. 78 and 94) and guava fruit crop (Block: B, Survey no.24) *i.e.*, 110 kg ha⁻¹. Low status of available nitrogen content was found in soil from ber fruit crop (Block: HF, Survey no.165) 225 kg ha⁻¹. The remaining fruit crops showed nitrogen content in the range of 110 and 225 kg ha⁻¹ *i.e.*, very low to low status of available nitrogen content as per six tier rating.

4.1.1.2.4 Available Phosphorus

The above soil analysis data has shown low status of available phosphorus found in soil samples (10 kg ha⁻¹). High status of available phosphorous content in soil was found in sapota fruit crop (Block: HF, Survey no. 45) *i.e.*, 28 kg ha⁻¹. The low and high status of available phosphorus ranged between 10 kg

 ha^{-1} and 28 kg ha^{-1} . Soil samples showed low to moderate ratings as per six tier rating.

4.1.1.2.5 Micronutrients

In the present study, micronutrients *viz.*, Fe, Mn, Zn and Cu were estimated from 77 root zone soil samples collected. 83.12 per cent of soil samples showed deficit in Fe content, 100 % soil samples were deficit in Mn content, 81.82 per cent of soil samples showed deficit in Zn content, where as 3.99 % of soil samples showed deficit in Cu content (Table 3.1).

The spore distribution, spore density and the composition of AM fungi were observed to be influenced by environmental and chemical factors of soil. The AM spore population, percentage of root colonization and distribution was affected by pH and soil mineral nutrient status such as N, P, K, Zn, Fe, etc. The earlier studies carried out by Khade & Rodrigues (2009), Gaur (2011) and Patale (2018) also showed a similar trend.

4.1.2Identification of AM fungi.4.1.2.1 AM fungal species identified from
each sample site

The isolation and identification of AM fungi in the rhizosphere soils of selected fruit crops from central campus MPKV, Rahuri was done. Altogether, 11 AM fungal species were isolated from seventy seven different rhizosphere soil samples belonging to five different genera viz., Glomus, Aculospora, Gigaspora, Sceutellospora and Rhizophagus (Table 4). Glomus was the dominant genus followed by Aculospora, Sceutellospora, Rhizophagus and Gigaspora. Glomus mosseae the most dominant species was recorded. Similar work of AM fungi isolation and identification was done by several researchers who isolated and identified the AM fungal species. Kavita & Nelson (2013) described seven species of Glomus from sunflower rhizosphere. Similarly, in this study also four species of Glomus were isolated and identified.

The present findings were in agreement with Charoenpakdee et al. (2010) who identified thirty-four morphospecies of AMF using spore characteristics. *Acaulospora* and *Glomus* occurred most frequently and

overall, were the most prevalent, containing 16 and 10 species respectively. There were 5 species in *Scutellospora*, 2 species in *Gigaspora* and 1 species in *Entrophospora* across 10 sampling sites. Also, Kumar Vinod et al. (2016) isolated and identified thirteen taxa of AM fungi from 105 rhizosphere soils and root samples of litchi (*Litchi chinnensis* Sonn.) trees. Among these, 8 species belonged to the genus *Glomus*, 2 species to *Aculospora* and one species each to *Rhizophagus*, *Entrophagus* and *Sceutellospora*. *Glomus* was observed to be predominant followed by *Aculospora in* the rhizosphere soil of lichi.

Similarly, D'Souza (2012) recovered twenty eight species of AM fungi of five genera, viz. Glomus, Acaulospora, Scutellospora, Gigaspora and Entrophospora from rhizosphere soils of seventeen mangrove species of eight families at seven riverine and fringe habitats in Goa. Glomus (16 species) the dominant genus followed by was Acaulospora (6 species), Scutellospora (4 species), Gigaspora (1 species) and Entrophospora (1 species). Glomus was the dominant genus, three species of which were sporocarpic forms. Motha (2014) isolated and identified 20 AM fungal species from ten different rhizosphere soils of brinjal in Andhra Pradesh, India belonging to the genera of Glomus, Acaulospora, Gigaspora, Sclerocystis and Entrophospora. Glomus was observed to be predominant followed by Acaulospora in the rhizosphere soils of brinjal.

Gaur & Kaushik (2011) isolated a total of 16 species of AM fungi from three medicinal plants of which more than fifty per cent of the total species identified belonged to the genus *Glomus*. Ajaz et al. (2017) identified arbuscular mycorrhizal fungi by considering spore morphology and wall characteristics.

4.1.2.2 Morphology of AM fungal spores identified

The number of spore morphotypes detected at each site according to shape, colour and size are presented in Table-5 .Most of the morphotypes were common to all sites and few were specific. All spores belonged to Glomerales and Diversisporales orders of AM fungi. A total of 4,243 spores of AMF were wet sieved from soil samples collected from eleven different fruit crops cultivated in seventy seven localities of central campus, MPKV, Rahuri. Spore morphology-based identification of AM fungal species indicated the dominance of *Glomus* species in the soils used in this study. Members of other genera were also detected, including those of Aculospora, Gigaspora, Sceutellospora and Rhizophagus. The predominant AM fungal morphotypes recognized in these soils included Glomus mosseae, Glomus aggregatum, Glomus fasciculatum, Glomus epigaeum, Rhizophagus intraradices. Gigaspora albida, Rhizophagus irregularis and minor species identified in these soils included Aculospora scrobiculata Aculospora denticulate, Sceutellospora arenicola and Sceutellospora heterogama.

Sr. No.	Fruit crop	Block	Survey No.	рН (1:2.5)	Organic carbon (%)	Available nitrogen content (kg ha ⁻¹)	Available Phosphorus (kg ha ⁻¹)
1	Mango	HF	28	7.79	0.22	118	10
2		HF	29	7.62	0.30	150	14
3		HF	30	7.62	0.28	135	12
4		HF	37	7.81	0.45	143	14
5		HF	39	7.96	0.25	120	10
6		HF	69	7.68	0.39	130	12
7		HF	73	7.59	0.45	168	20
8		HF	74	7.93	0.25	135	11
9		HF	166	7.90	0.28	130	13
10		HF	168	7.95	0.34	150	15

 Table 2: Chemical properties and available N and P content of soils collected from root zone of selected fruit crops from central campus MPKV, Rahuri

Raut et al.		Ind. J.	Pure App. 1	Biosci. (201	9) 7(6), 386-4	-01	ISSN: 2582 -	- 284:
11		А	136	8.20	0.37	162	16	
12		А	137	8.12	0.24	110	10	
13		В	8	7.73	0.48	163	18	
14		В	71	8.04	0.32	155	15	
15		В	72	8.00	0.27	125	12	
16		Е	75	8.02	0.39	138	12	
17		Е	78	8.09	0.20	110	10	
18		Е	79	8.16	0.32	147	16	
19		E	80	8.20	0.48	170	19	
20		E	81	7.92	0.25	128	10	
21		E	82	8.03	0.28	130	13	
22		E	83	8.11	0.33	140	14	
23		E	84	8.58	0.62	195	22	
24		E	90	7.45	0.39	160	17	
25		E	91	7.62	0.52	178	20	
26		E	92	7.40	0.45	160	17	
27		E	93	7.41	0.21	115	10	
28		E	94	8.16	0.20	110	10	
29		E	102	8.09	0.25	135	12	
30		E	103	7.62	0.32	140	15	
31	T	E	119	7.93	0.32	145	16	
32	Lemon		30	/.65	0.21	115	10	
33			39	7.79	0.61	190	20	
25			40	7.92	0.40	1/2	18	
35	Sweet Orenge		20	7.84	0.55	155	13	
30	Sweet Ofalige	ПГ	30	7.70	0.40	102	17	
37			40	7.96	0.22	112	10	
30		ПГ НЕ	40	7.90	0.34	130	14	
40	Grane	HE	27	7.83	0.45	190	23	
40	Orape	HE	27	7.65	0.01	135	12	
42		HF	27	7.05	0.27	162	12	
43		HF	27	7.41	0.30	134	11	
44		HF	27	7.45	0.66	213	28	
45		HF	27	7.92	0.48	180	19	
46		HF	27	7.94	0.26	125	11	
47		HF	27	7.99	0.24	120	11	
48		HF	27	7.74	0.52	170	21	
49		HF	27	7.55	0.26	130	11	
50		HF	27	7.84	0.38	155	18	
51	Pomogranate	HF	40	7.73	0.59	188	22	
52		HF	43	7.76	0.50	175	20	
53		HF	72	8.10	0.30	140	11	
54		В	12	8.21	0.32	150	15	
55		E	70	8.29	0.38	166	18	
56	Sapota	HF	41	7.75	0.54	185	22	
57		HF	42	7.78	0.35	152	17	
58		HF	43	7.90	0.32	135	11	
59		HF	45	7.76	0.34	155	28	
60		HF	47	7.96	0.47	172	20	
61		HF	49	7.64	0.45	168	20	
62		E	63	8.14	0.45	135	17	
63		E	64	8.29	0.34	138	15	
64		E	13	/.96	0.47	1/0	18	
65		E	15	/.95	0.43	100	16	
60		E	/0	8.00	0.50	180	20	
0/	Guava		95	8.10 7.70	0.62	210	25	
60	Guava		23	7.10	0.00	190	10	
70			20	7.70 8.01	0.54	100	20	
70		1117	44	0.21	0.50	10.5	20	

Ra	ut et al.		Ind. J.	Pure App. H	Biosci. (201	9) 7(6), 386-4	-01	ISSN: 2582 – 2845
	71		HF	67	7.85	0.33	150	14
	72		В	24	7.98	0.20	110	10
	73	Onla	HF	43	7.90	0.36	150	16
	74		D	72	8.22	0.50	198	15
	75	Ber	HF	165	7.55	0.69	225	10
	76	Fig	HF	169	7.96	0.24	125	19
	77	Custard Apple	HF	72	8.10	0.32	145	14
					A B	**		

2.1 Soil pH

Rating of pH.

Sr. No.	Ratings	рН (1:2.5)
1	Extremely acidic	<4.5
2	Strongly acidic	4.6-5.5
3	Moderately acidic	5.6-6.5
4	Slightly acidic	6.6-6.9
5	Neutral	7.0
6	Slightly alkaline	7.1-8.0
7	Moderately alkaline	8.1-9.0
8	Strongly alkaline	9.1-10.0
9	Very strongly alkaline	10.1-11.0

Patil & Mali (1999)

2.2 Organic carbon Six tier ratings of organic carbon and available nutrients.

	8 · · · 8 · · · · · · · · · · · · · · ·							
Sr.	Ratings	Organic Available Nutrients (kg ha ⁻¹⁾						
No.		carbon (%)	Ν	Р	К			
1	Very Low	<0.20	<140	<7	<100			
2	Low	0.21-0.40	141-280	7.1-14	101-150			
3	Moderate	0.41-0.60	281-420	14.1-21	151-200			
4	Moderately high	0.61-0.80	421-560	21.1-28	201-250			
5	High	0.81-1.0	561-700	28.1-35	251-300			
6	Very High	>1.0	>700	>35	>300			

Bangar & Zende (1978)

Table 3: Status of micro-nutrients (Fe, Mn, Zn and Cu) of soils collected from root zone of selected fruit crops from central campus MPKV, Rahuri

Sr. No.	Fruit crop	Block	Survey	Availa	able micro-r	utrient (mg	kg ⁻¹)
			No.	Fe	Mn	Zn	Cu
1	Mango	HF	28	2.67	1.81	0.44	0.55
2		HF	29	2.05	1.95	0.42	0.20
3		HF	30	2.28	1.95	0.43	0.22
4		HF	37	2.92	1.42	0.48	0.55
5		HF	39	2.66	1.81	0.45	0.55
6		HF	69	2.18	1.68	0.46	0.22
7		HF	73	2.06	1.45	0.45	0.50
8		HF	74	3.30	1.68	0.57	0.97
9		HF	166	2.75	1.98	0.43	0.25
10		HF	168	2.48	1.81	0.41	0.20
11		А	136	4.65	1.21	0.63	0.95

Raut et al.		Ind. J. Pure	App. Biosci.	(2019) 7(6),	386-401	IS	SN: 2582 – 284	15
12		А	137	4.68	1.25	0.63	0.93	
13		В	8	2.11	1.26	0.41	0.37	
14		В	71	2.89	1.81	0.47	0.80	
15		В	72	2.85	1.42	0.46	0.75	
16		E	75	4.79	1.95	0.68	0.92	
17		E	78	1.64	1.95	0.30	0.26	
18		Е	79	2.18	1.68	0.42	0.85	
19		Е	80	2.05	1.45	0.45	0.34	
20		Е	81	4.32	1.98	0.55	0.55	
21		Е	82	4.37	1.82	0.52	0.95	
22		Е	83	4.45	1.82	0.56	0.74	
23		Е	84	4.22	1.66	0.51	0.85	
24		Е	90	4.32	1.25	0.57	0.68	
25		Е	91	4.35	1.25	0.55	0.75	
26		Е	92	4.25	1.82	0.57	0.76	
27		Е	93	4.33	1.66	0.57	0.78	
28		Е	94	4.53	1.24	0.60	0.75	
29		Е	102	4.66	1.25	0.60	0.93	
30		Е	103	4.10	1.98	0.55	0.95	
31		Е	119	4.32	1.45	0.67	0.80	
32	Lemon	HF	30	2.25	1.60	0.58	0.85	
33		HF	39	2.65	1.82	0.53	0.48	
34		HF	40	2.48	1.65	0.51	0.14	
35		HF	166	2.05	1.55	0.40	0.17	
36	Sweet Orange	HF	30	2.28	1.62	0.43	0.68	
37	0	HF	39	2.45	1.82	0.42	0.89	
38		HF	40	2.28	1.85	0.43	0.81	
39		HF	166	2.18	1.83	0.38	0.65	
40	Grape	HF	27	1.80	1.90	0.32	0.85	
41	1	HF	27	1.94	1.32	0.34	0.31	
42		HF	27	2.21	1.62	0.46	0.65	
43		HF	27	2.52	1.16	0.48	0.48	
44		HF	27	2.74	1.39	0.50	0.14	
45		HF	27	4.39	1.28	0.57	0.82	
46		HF	27	4.42	1.21	0.58	0.89	
47		HF	27	4.59	1.18	0.60	0.71	
48		HF	27	4.44	1.90	0.58	0.73	
49		HF	27	4.45	1.51	0.59	0.93	
50		HF	27	4.42	1.64	0.53	0.80	
51	Pomogranate	HF	40	4.45	1.52	0.56	0.77	
52		HF	43	4.49	1.73	0.59	0.73	
53		HF	72	4.45	1.24	0.56	0.80	
54		В	12	4.41	1.89	0.51	0.83	
55		Е	70	4.45	1.30	0.56	0.89	
56	Sapota	HF	41	4.52	1.79	0.60	0.77	
57		HF	42	4.43	1.96	053	0.82	
58		HF	43	4.57	1.94	0.60	0.85	
59		HF	45	4.37	1.04	0.51	0.85	
60		HF	47	4 68	1.60	0.60	0.88	
61		HF	49	4.48	1.02	0.59	0.87	
62		E	63	3 77	1.02	0.51	0.80	
63		E	64	4.32	1.34	0.59	0.75	
	1		~ .				<u> </u>	

Raut	t et al.		Ind. J. Pure	App. Biosci.	(2019) 7(6),	386-401	IS	SN: 2582 – 2	2845
	64		E	73	4.52	1.52	0.60	0.76	
	65		E	75	4.13	1.86	0.51	0.77	
	66		E	76	4.23	1.02	0.52	0.78	
	67		Е	93	4.22	1.65	0.52	0.72	
	68	Guava	HF	25	4.20	1.51	0.50	0.69	
	69		HF	26	4.32	1.02	054	0.63	
	70		HF	44	4.25	1.51	0.50	0.62	
	71		HF	67	4.46	1.60	059	0.80	
	72		В	24	4.55	1.04	0.60	0.86	
	73	Onla	HF	43	4.20	1.69	0.52	0.70	
	74		D	72	4.55	1.96	0.60	0.97	
	75	Ber	HF	165	4.54	1.28	0.60	0.87	
	76	Fig	HF	169	4.38	1.64	0.54	0.83	
	77	Custard Apple	HF	72	4.11	1.51	0.48	0.70	

3.1 Micronutrients Critical limit of available micronutrients (mg kg⁻¹)

Content	Micronutrients (mg kg ⁻¹)					
	Fe	Mn	Zn	Cu		
Deficit	< 4.5	< 2.0	< 0.6	< 0.2		

Katkar & Patil (2010)

Table 4: AM fungal species identified from each sample site of selected fruit crops from orchards at central campus, MPKV, Rahuri

Sr. No.	Fruit crop	Block	Survey No.	AM fungal spores
1	Mango	HF	28	Glomus mosseae, G. epigaeum
2		HF	29	Glomus fasciculatum, G. aggregatum, G. epigaeum
3		HF	30	Glomus mosseae, G. epigaeum
4		HF	37	Glomus mosseae, G. fasciculatum
5		HF	39	Glomus aggregatum, G. epigaeum
6		HF	69	Glomus mosseae
7		HF	73	Glomus mosseae, G. fasciculatum ,
				G. aggregatum
8		HF	74	Glomus mosseae, G. epigaeum
9		HF	166	Glomus fasciculatum
10		HF	168	Glomus mosseae, G. fasciculatum
11		А	136	Glomus fasciculatum, G. aggregatum, G. epigaeum
12		А	137	Glomus aggregatum, G. epigaeum
13		В	8	Glomus mosseae, G. aggregatum
14		В	71	Glomus aggregatum, G. epigaeum
15		В	72	Glomus mosseae, G. epigaeum
16		Е	75	Glomus mosseae
17		Е	78	Glomus mosseae, G. fasciculatum
18		Е	79	Glomus fasciculatum, G. aggregatum, G. epigaeum
19		Е	80	Glomus mosseae, G. fasciculatum, G. aggregatum
20		Е	81	Glomus epigaeum
21		Е	82	Glomus mosseae
22		Е	83	Glomus mosseae, G. aggregatum
23		Е	84	Glomus fasciculatum, G. aggregatum, G. epigaeum
24		Е	90	Glomus mosseae, G. fasciculatum

Raut et al.		<i>Ind. J. Pure App. Biosci.</i> (2019) 7(6), 386-401 ISSN:				
25		Е	91	Glomus mosseae, G. aggregatum, G. epigaeum		
26		Е	92	Glomus mosseae, G. epigaeum		
27	27 E 93		93	Glomus mosseae		
28		Е	94	Glomus fasciculatum		
29		Е	102	Glomus mosseae		
30		Е	103	Glomus fasciculatum		
31		Е	119	Glomus mosseae, G. fasciculatum		
32	Lemon	HF	30	Glomus mosseae, Aculospora scrobiculata		
33		HF	39	Glomus aggregatum, Aculospora scrobiculata		
34		HF	40	Glomus mosseae, G. aggregatum		
35		HF	166	Glomus mosseae, Aculospora scrobiculata		
36	Sweet	HF	30	Glomus mosseae, G. aggregatum		
	Orange					
37		HF	39	Glomus aggregatum		
38		HF	40	Glomus mosseae, G. aggregatum		
39		HF	166	Glomus mosseae		
40	Grape	HF	27	Glomus mosseae, G. aggregatum, Gigaspora albida		
41		HF	27	Glomus aggregatum		
42		HF	27	Glomus mosseae, Gigaspora albida		
43		HF	27	Gigaspora albida		
44		HF	27	Glomus mosseae, G. aggregatum,		
				Gigaspora albida,		
45		HF	27	Glomus mosseae, G. aggregatum		
46		HF	27	Glomus aggregatum, Gigaspora albida		
47		HF	27	Glomus mosseae, Gigaspora albida		
48		HF	27	Glomus mosseae, G.aggregatum, Gigaspora albida		
49		HF	27	Glomus mosseae, Gigaspora albida		
50		HF	27	Glomus aggregatum		
51	Pomogranate	HF	40	Glomus mosseae, G. aggregatum		
52		HF	43	Glomus mosseae, Gigaspora albida		
53		HF	72	Glomus aggregatum		
54		В	12	Glomus mosseae		
55		Е	70	Glomus mosseae, G. aggregatum		
56	Sapota	HF	41	Glomus mosseae, Rhizophagus intraradices,		
				Rhizophagus irregularis		
57		HF	42	Glomus mosseae		
58		HF	43	Rhizophagus intraradices		
59		HF	45	Glomus mosseae		
60		HF	47	Glomus mosseae, Rhizophagus intraradices		
61		HF	49	Glomus mosseae		
62		Е	63	Glomus mosseae, Rhizophagus intraradices		
63		Е	64	Rhizophagus irregularis		
64		Е	73	Glomus mosseae, Rhizophagus intraradices		
65		Е	75	Rhizophagus intraradices , Rhizophagus irregularis		
66		Е	76	Glomus mosseae, Rhizophagus intraradices		
67		Е	93	Glomus mosseae, Rhizophagus irregularis		
68	Guava	HF	25	Rhizophagus intraradices,		
				Rhizophagus irregularis		
69		HF	26	Glomus mosseae.		
70		HF	44	Glomus mosseae, Rhizophagus intraradices		

Raut et al.		Ind. J	. Pure App. Bi	osci. (2019) 7(6), 386-401 ISSN: 2582 – 2845		
	71		HF	67	Glomus mosseae	
	72		В	24	Rhizophagus intraradices	
	73	Onla	HF	43	Glomus epigaeum	
	74		D	72	Glomus mosseae	
	75	Ber	HF	165	Glomus mosseae, Aculospora denticulate,	
					Sceutellospora arenicola, S. heterogama	
	76	Fig	HF	169	Glomus mosseae	
	77	Custard	HF	72	Glomus mosseae, Aculospora denticulate	
		Apple				

Table 5: Morphology of AM fungal spores identified from root zone soil samples of selected fruit crops from orchards at central campus, MPKV, Rahuri

Sr. No. Spore type		Shape	Spore	Colour of wall	Number of wall laver
	~F JF-	~ F -	diameter (µm)		- · · · · · · · · · · · · · · · · · · ·
1.	Glomus mosseae	Globose-	105-310 x	Brownish yellow	Double layered
		elliptical	110-305		
2. Glomus		Globose-	67-90	Brown	Double layered
	aggregatum	subglobose			
3.	Glomus	Globose-	75-150 x 35-	Light brown	Single layered
	fasciculatum	subglobose	100		
4.	Glomus epigaeum	Globose-	80-150	Pale yellow to deep	Double layered
		subglobose		yellow	
5.	Aculospora	Globose-	112-149	Red brown	1-4 layered
	denticulate	subglobose			
6.	Aculospora	Globose-	100-240 x	Greenish yellow	Four layered
	scrobiculata	subglobose	100-220		
7.	Gigaspora albida	Globose	232-252x 234-	Greenish yellow	One-six layered
			250		
8.	Sceutellospora	Subglobose to	160-270	Orange- brown	Double layered
	arenicola	irregular			
9.	Sceutellospora	Globose-	150-220	Yellow brown-red	Four layered
	heterogama	subglobose		brown	
10.	Rhizophagus	Globose-	70-165	Pale yellow to	Three layered
	irregularis	subglobose, ovid,		yellow brown	
		oblong or			
		irregular			
11.	Rhizophagus	Globose-	40-140	Yellow brown	Three layered
	intraradices	subglobose			

CONCLUSION

The present investigation was carried out with a view to isolate and identify AM fungi collected from root rhizosphere soils of eleven different fruit crops from 77 orchards at central campus, MPKV, Rahuri, Maharashtra.

The spore distribution, spore density and the composition of AM fungi were observed to be influenced by environmental and physicochemical factors of soil. The AM spore population and distribution were affected by pH and soil mineral nutrient status such as organic carbon, available N, available P, Fe, Mn, Zn and Cu. Eleven AM fungal species were isolated from seventy seven different rhizosphere soil samples belonging to five different genera viz., Glomus, Aculospora, Gigaspora, Sceutellospora and Rhizophagus. Glomus was the dominant genus followed by Aculospora, Sceutellospora, Rhizophagus and Gigaspora. Glomus mosseae was the most dominant species recorded.

All the isolated spores belonged to Glomerales and Diversisporales orders of AM fungi. A total of 4,243 spores of AMF were wet sieved from soil samples.The spore morphology-based identification of AM fungal

species indicated the dominance of Glomus species in soils used in this study. Members of other genera were also detected, including those of Aculospora, Gigaspora, Sceutellospora and Rhizophagus. The predominant AM fungal morphotypes recognized in these soils included Glomus mosseae, Glomus aggregatum, Glomus fasciculatum, Glomus epigaeum, Rhizophagus intraradices, Gigaspora albida, Rhizophagus irregularis and minor species identified in these soils included Aculospora scrobiculata Aculospora denticulate, *Sceutellospora* arenicola and Sceutellospora heterogama.

- 1. AM fungal species belonging to five different genera viz., Glomus, Aculospora, Gigaspora, Sceutellospora and Rhizophagus were recovered from the rhizosphere soil samples.
- The most dominant genus recorded in the present study is *Glomus* (4) followed by *Aculospora* (2), *Sceutellospora* (2) *Rhizophagus* (2) and *Gigaspora* (1).
- 3. The organic carbon, available nitrogen and available phosphorus showed positive correlation with root colonization while available phosphorus showed negative correlation with number of spores.
- 4. The micronutrients Fe and Zn showed non-significant positive correlation with root colonization (%) whereas Mn and Cu showed non-significant negative correlation with root colonization (%). Micronutrients Fe, Zn and Cu showed significantly positive correlation with IP (per 100 g of soil) while Mn showed significantly negative correlation with IP (per 100 g of soil).Micronutrient Zn showed positive but non-significant correlation with no. of spores (per 100 g of soil), whereas Fe, Mn and Cu showed negative but non-significant correlation with no. of spores (per 100 g of soil).
- 5. The isolation frequency was highest in *Glomus mosseae* (68.83 %) followed by *Glomus aggregatum* (33.76 %), *Sceutellospora arenicola* and *Sceutellospora heterogama* (01.29 %) respectively.

Acknowledgement

I express the depth of gratitude to, my Research Guide and Chairman of my Advisory Committee Dr. C.D. Deokar, Professor, College of Agriculture, Dhule . I am obligated to all the researchers and scientists whose literature helped me throughout the course of the investigation and to prepare this manuscript properly.

REFERENCES

- Ajaz, M., Zargar, M.Y., & Sekhar, J.C. (2017).
 Isolation, Identification and Characterization of Arbuscular Mycorrhizal Fungi in Apple (*Malus domestica Borkh*) Growing Area of Kashmir Himalaya Int. J. Curr. Microbiol. App. Sci. 6(8), 25-37.
- Bangar, A.R., & Zende, G.K. (1978). Evaluation of soil test for nitrogen. J. Maharashtra. Agric. Univ.3(1), 58-59.
- Charoenpakdee, S., Cherdchai, P., Dell, B., & Lumyong, S. (2010). The mycorrhizal status of indigenous arbuscular mycorrhizal fungi of physic nut (*Jatropha curcas*) in Thailand. Mycosphere, *1*(2), 167-181.
- D'Souza James & Rodrigues Bernard Felinov. (2012). Biodiversity of Arbuscular Mycorrhizal (AM) fungi in mangroves of Goa in West India. J. For. Res., DOI 10.1007/s11676-013-0342-0.
- Gashua, I.B., Abba, A.M., & Gwayo, G.A. (2015). Occurrence of arbuscular mycorrhizal fungi in chilli peppers (*Capsicum annuum* L.) grown in Sahelian Soil. *Int. J. of Curr. Microbiol. App.Sci.*, 4(2), 419-425.
- Gerdemann, J.W., & Nicolson, T.H. (1963). Spores of Mycorrhiza Endogone species extracted from soil by wet sieving and decanting *Trans. Br. Mycol. Soc.*, 46(2), 235-244.
- Guar, S., & Kaushik, P. K. (2011). Biodiversity of Vesicular Arbuscular Mycorrhiza associated with *Catharanthus roseus*, *Ocimum spp*. and *Asparagus racemosus* in Uttarakhand

Copyright © Nov.-Dec., 2019; IJPAB

Ind. J. Pure App. Biosci. (2019) 7(6), 386-401

- Raut et al. Ind. J. Pure App. Bi state of Indian Central Himalaya. International Journal of Botany. 7(1), 31-41.
- Harley, J.L. (1959). The Biology of Mycorrhiza.Interscience Publishers, Inc. New York. pp 234.
- Harley, J.L., & Smith, S.E. (1983). Mycorrhizal Symbiosis,Academic Press, London, pp. 483.
- Jackson, M.L. (1973). Soil Chemical Analysis. Prentice Hall Pvt. Ltd., New Delhi. pp. 38-485.
- Katkar, R.N., & Patil, D.B. (2010). Available micronutrient content in soils of Vidharbha. Souvenir of State Level Seminar in Dept. of Soil Science and Agriculture Chemistry, Dr. PDKV, Akola organized during Jan. 2-3, 2010. pp. 161-166.
- Kavitha, T., & Nelson, R. (2013). Diversity of Arbuscular Mycorrhizal Fungi (AMF) in the Rhizosphere of *Helianthus annuus* L. American-Eurasian. J. Agric. and Environ. Sci., 13(7), 982-987.
- Khade, S.W., & Rodrigues, B.F. (2009). Arbuscular mycorrhizal fungi associated with varieties of *Carica* papaya L. in tropical agro-based ecosystem of Goa, India. Tropical and Subtropical Agroecosystems, 10, 369-381.
- Kothari, S.K., Marschner, H., & Romheld, V. (1991). Effect of a vesicular-arbuscular mycorrhizal fungus and rhizospheric microorganism on manganese reduction in the rhizosphere and manganese concentration in maize (*Zea mays* L.) *New Phytologist*, *117*, 649-655.
- Kumar, V., Kumar, R., & Kumar, A. D. A. (2016). Spore population, colonization, species diversity and factors influencing the association of arbuscular mycorrhizal fungi with litchi trees in India. J. Environ. Biol., 37, 91-100.
- Li, X.L., Marscher, H., & Romheld, V. (1991). Effect of vesicular-arbuscular

mycorrhizal fungi and rhizosphere microorganisms on manganese concentration in maize (*Zea mays* L.). *New Phytologist*, 117, 649-655.

- Lindsay, W.L., & Norwvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. *Soil Sci. Soc. American J.*, 42, 412-428.
- McFarland, J., Ruess, R., Keilland, K., Pregitzer, K., Hendrick, R., & Allen, M. (2010). Cross- ecosystem comparisons of *in situ* plant uptake of amino acid-N and NH₄+. Ecosystems, *13*, 177-193.
- Miller, R.M., & Jastrow, J.D. (1990). Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. *Soil Biol. Biochem.*, *17*, 565-569.
- Motha, S. Vani, Amballa, H., & Reddy, B.N. (2014). Arbuscular mycorrhizal fungi associated with rhizosphere soils of brinjal cultivated in Andhra Pradesh, India Int. J. Curr. Microbiol. App. Sci. 3(5), 519-529.
- Mukopadhyay, S., & Maiti, S.K. (2009). Biofertilizer: VAM Fungi- a future prospect forbiological reclamation of mine degraded lands. *Indian J. Environ. Prot.*, 29(9), 801-808.
- Mulongoy, K., Gianinazzi, S., Roger, P.A., & Dommergues, Y. (1992). In: *Microbial technology* : *economic and social aspects* (Ed.Da Silva, E., Sasson, A. and Rotledge. C.).Cambridge Univ. Press, Cambridge, pp. 59-69.
- Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon and organic matter. *In:* Methods of Soil Analysis, Part-2, Page, A.L. (Ed), American Society of Agronomy *Inc. Soil Science American Inc. Madison, Wisconsin,* USA. pp. 539-579.
- Patale, S.W. (2016). Screening of Brinjal Rhizosphere Soil for Assessment of AM Fungi. Int. Jour. Adv. Multi. Res., 3(1), 74-77.
- Patil, V.D., & Mali, C.V. (1999). Fundamentals of soil science a text

Copyright © Nov.-Dec., 2019; IJPAB

Ind. J. Pure App. Biosci. (2019) 7(6), 386-401

book. Phoenix Publication Parbhani.pp. 109.

- Sarmah, R., Mazid, E., Bhattacharjee, R.N., Devi, M., Sarma, T.C., Barua, P., & Patgiri, S.R. (2001). Impact of shifting cultivation on the occurrence of vesicular - arbuscular mycorrhizal fungi. *Jadv. Pl. Sci.*, 3, 59 - 65.
- Subbaih, B.V., & Asija, G.L. (1956). A rapid procedure for the estimation of available nitrogen in soils. *Current Science*, 25, 259-260.
- Chahar, S. (2017). Study of biodiversity of Arbuscular Mycorrhizal Fungi (AMF)

in the Rhizosphere of Withania somnifera (L.) Bioscience Discovery, 8(3), 397-401.

- Watanabe, F.S., & Olsen, S.R. (1965). Test of ascorbic acid methods for phosphorus in water and sodium bicarbonate extract of soils. *Proceeding of Soil Science America*, 21, 677-678.
- Wright, S.F., & Upadhyaya, A. (1998). A survey of soil for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. *Soil Sci.*, *198*, 97-107.